StreamMD
Molecular Dynamics

Eric Darve
MD of water molecules

- Cutoff is used to truncate electrostatic potential

\[U(r) = 0, \quad \text{for } |r| > r_{cutoff} \]

- Gridding technique: water molecules are grouped in clusters of size \(r_{cutoff} \).
- Problem: what data structure do we use to store this array of clusters?
• Option: 3D array of streams.
• Needs to be updated at each time step (or every 10 time steps) to account for molecules that enter or leave a cluster.
• Q: how do I move data from one stream to another?
• Q: how does the compiler take care of the load balancing?
• Data locality defined by geometric distance between clusters, i.e.
 If two clusters are neighbors, they should be physically located in neighbor processors.
Current implementation

• After position has been updated:
 – Loop over all clusters C[i][j][k]:
 • We push in C[i][j][k] if water molcl is in same cluster.
 • We push in Ctmp otherwise.
 – Ctmp is then concatenated in a large stream Mol which contains all the molecules which have exited their cell.
 – Kernel is exec. to push molecules in Mol to C[i][j][k].
MD of proteins

• Three possible types of potentials:
 Bond stretch: two atoms and 1 bond.
 Bond angle: three atoms and 2 bonds.
 Torsion angle: four atoms and 3 bonds.

• Typical organization of the computation:
 loop over bond stretch, bond angle and torsion potentials.

• Brook needs some information to map the data in an efficient manner.
• Information is static: connectivity between atoms does not change throughout the run.
• However the information is not accessible to the compiler: run-time information.
• Protein backbone: sequence of amino-acids. Typically 10-20 atoms each.
• User can provide following information: for each atom, give residue number.
• “Distance” between two data can then be defined as the difference between residue number.

• Run-time optimization approach: all atoms with same residue number are on the same processor. 2 processors with nearby residue numbers should be physically close to each other.
Load balancing

• Typical size of protein: 10 residues for test proteins to hundreds for real life problem.
• Size is relatively small but computationally very expensive. Well optimized load balancing and distribution of data is critical.
• Example: Duan and Kollman ’98. 36-residue protein + 3000 water molecules. 1/2 billion time steps: four months on 256-processor computer. Complete fold would have required: x 10, x 100.