The Merrimac streaming supercomputer project aims to develop a scientific computer that offers an order of magnitude or more improvement in performance per unit cost compared to cluster-based scientific computers built from the same underlying semiconductor and packaging technology. We expect this efficiency to arise from two innovations: stream architecture and advanced interconnection networks. Organizing the computation into streams and exploiting the resulting locality using a register hierarchy enables a stream architecture to reduce the memory bandwidth required by representative computations by an order of magnitude or more.

Requirements for Achieving High Performance on Modern Semiconductor Processes

- Parallelism: 100 GFLOPS per chip (millions per system)
- Latency Tolerance: 500 cycle remote memory access
- Locality: To match 20Gbps/ALU bandwidth to ~100Gbps/chip bandwidth

Merrimac Architecture

- 90nm CMOS process (1 V)
- ASIC technology
- 1 GHz (37 FO4)
- 128 GFLOPs

Merrimac Node

- Inter-cluster switch between clusters
- 156.25 mm² (small ~12.5 x 12.5)
- Stanford Imagi is 16mm x 16mm
- MIT Raw is 18mm x 18mm
- 25 Watts per processor (P4 = 75 W)
- 41 Watts total per node (with DRAM)

Memory System

- Single instruction accesses thousands of multi-word records
- Fill a very deep and wide memory pipeline
- High-performance bandwidth
 - 16 banks of 1 Gbit DDR2-SDRAM for 25.6 GBytes peak memory bandwidth
 - Memory access scheduling
 - Improves average DRAM bandwidth
 - Bandwidth amplification through stream cache
- High bandwidth global memory space
 - Flat address space to access local memory at any node
 - Segregate registers translate virtual addresses
 - Network controller performs remote accesses
 - High radix routers allow for efficient single word messages

Stream Register File

- Single ported memory
 - Efficient wide access of 4 contiguous words
- Implemented using sub-arrays
 - Reduced access time
 - Reduced power
- Stream-buffers match bandwidth to compute needs
 - Time multiplex the SRF port
- Indexed SRF at low extra cost
 - 8:1 MUX in sub-arrays
 - Row decoder per sub-array

Iterative Unit

- Speeds up inverse and inverse sqrt
 - Generates 27 bits of precision
- Newton-Raphson iteration
 - on MADD units

Merrimac Node

- Clocks: 100 MHz
- Power: 200W

Merrimac System

- 32 boards
- Bandwidth: 256GB/s
- Memory: 4GB
- DRAM: 128GB
- Clocks: 100 MHz
- Power: 200W

Merrimac Implementation Plan

- Completed Merrimac processor architecture specification document
- Architecture definition, instruction set architecture. Exceptions
 - Responded to NASA HARP BAA with detailed prototype plan
- Chip design steps (in collaboration with LLNL):
 - Contact several chip design firms for accurate estimates and design proposals
 - Chip design with most competitive firm
 - Fabrication, testing and packaging
- System design steps (in collaboration with LLNL):
 - Merrimac processors designed to integrate with Cray XARC interconnection network
 - Merrimac boards designed to plug into Cray Rainer system
- Software system steps:
 - Continued compiler development collaboration with Reservoir Labs
 - Collaborate with LLNL on run-time system design
 - Collaborate with LBNL on UPC integration and multi-node

Status: October 2004