Brook for GPUs

Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston, and Pat Hanrahan

Motivation

- General purpose computing
- GPU = general stream coprocessor
- Friendly programming environment
- Programmer need not know GL
- Virtualize or abstract GPU resources
- Cross platform
 - ATI & NVIDIA
 - Linux and Windows
 - DX and OpenGL

In the News

- Open source
- Over 6,300 downloads in 8 months
- 163K page hits
- GPGPU SIGGRAPH Course
- In the news:
 - IEEE Computer
 - http://slashdot.org
 - http://opengl.org
 - http://gpgpu.org

Brook Language

- Streams
 - collection of records requiring similar computation
 - particle positions, voxels, FEM cell, ...
 - Ray r<200>
 - float velocityfield<100,100,100>
 - similar to arrays, but...
 - index operations disallowed: position[i]
 - read/write stream operators
 - streamRead (r, v_ptr);
 - streamWrite (velocityfield, v_ptr);

- Kernels
 - functions applied to streams
 - similar to for_all construct
 - kernel void foo (float a<>, float b<>, float c<>, out float result<>) {
 float array[], iter float n<>, c<100>, b<100>, a<100>
 for (int i=0; i<100; i++)
 c[i] = a[i] + b[i];
 }

Gather Streams

- Indirect addressing of stream data allowed inside kernels.
- Argument passed with array syntax
 - float array[]

- Maps to depended texture lookup
 - velocityfield<100,100,100>
 - Ray r<200>

Iterator Streams

- Special stream type preinitialized with sequential values (1,2,3,4,...).
- Maps to depended texture lookup
 - _tex_pos, _tex_pos_pos

Running Brook

- BRCC Compiler
 - Based on ctool
 - Leverage vendor shader compilers
 - Microsoft: fx
 - NVIDIA: cgc
 - Converting kernels into shaders
 - stream fetch and store
 - gather operations
 - register mapping
 - stub function

Virtualization

- Stream size and dimensions
 - packing streams into 2D segmented memory space
 - compiler inserts address translation code
 - float matrix<8096,10,30,5>;

Applications

- ray-tracer
- segmentation
- 2D convolutions
- linear algebra
- fft edge detect

GPU Results

- compared against:
 - Intel Math Kernel Library
 - Atlas Math Library
 - cached blocked segmentation
 - FFTW
 - Wald SSE Ray-Triangle code